|  ÁRAJÁNLAT KÉRÉS  |  Elérhetőség, telefon, mobil   |  
Kapcsolat, elérhetőség:
email, cím, telefonszám
   |  
Honlap térkép,
tartalmi áttekintés
 Honlap térkép  |  
Keresés a honlap tartalmában
az MXCMS8 belső keresőjével
      
 // www.MaXeline.hu / Extrák / Keresőoptimalizálás / SEO és egyéb tudásbázis, fogalomtár / ftth / F.T.T.H. / FTTH hírek

ftth / F.T.T.H. / FTTH hírek

ftth / F.T.T.H. / FTTH hírek:


Magyar Telekomnál: FTTH 2009. április

Infó: A Magyar Telekom (t-home) új szélessávú internet-stratégiájába illeszkedve a hét elején elindult a lakossági internetszolgáltatás a cég optikai hálózatán. A fiber-to-the-home (optikai kábel a lakásig, FTTH, FTTX) hálózattal a jelenleg széles körben elterjedt, réz érpáron alapuló xDSL-kapcsolatokkal elérhető sávszélesség többszörösét oszthatják ki egy háztartásnak! A lefedettség egyelőre nem országos szintű, de a szolgáltató gyors ütemű hálózatfejlesztést ígér - év végére akár 200 ezer háztartásban lehet ott az optikai kábel, melyen keresztül a gyors interneten túl televíziós szolgáltatást és vezetékes telefonszolgáltatást is nyújt a cég majd. 2009 áprilistól a vállalat új és meglévő ügyfelei hétfő óta ötféle konstrukcióban igényelhetik az FTTH-szolgáltatást, a T-Home Optinet díjcsomagok közt van forgalmi korlátos, és korlát nélküli, a legkisebb sávszélesség (Optinet Easy, Happy) letöltési irányban 5, feltöltési irányban 2,5 megabit másodpercenként, a legnagyobb csomag (Optinet Super) ennek a sávszélességnek a tízszeresét kínálja (a garantált sávszélesség minden esetben a megadott maximális érték fele). A szolgáltatások havidíja 4390 forintról indul, a legdrágább csomag 13 890 forintba kerül havonta egyéves hűségnyilatkozattal -- erre a triple play és dual play konstrukciók esetén, azaz egyidejű telefonszolgáltatás és IPTV igényléskor szokás szerint kedvezményt ad a Magyar Telekom. Az új díjcsomagok tehát arányaiban ugyanazért a pénzért lényegesen gyorsabb internetezést tesznek lehetővé, mint az xDSL-csomagok, viszont optika szükséges hozzá. T-home egy weboldalt is létrehozott az új generációs hálózat bemutatására, ahol az elérhető díjcsomagok áttekintése mellett az érdeklődők tájékozódhatnak a technikai háttérről, valamint a szolgáltatás elérhetőségéről. Az FTTH-hálózat a weboldal tanúsága szerint jelenleg Baja, Budapest, Debrecen, Miskolc, Nyíregyháza, Pécs, Sopron, Székesfehérvár, Szolnok és Szombathely bizonyos területein érhető el. A tényleges létesítési lehetőségről csak a megrendelést követően tájékoztat a szolgáltató. Ettől függetlenül a Magyar Telekom az optikai hálózat bővítésével egy időben megkezdte kábelhálózatának továbbfejlesztését az EuroDocsis 3.0 szabványnak megfelelően. Az T-Home szolgáltatásválasztékában az Optinet díjcsomagokkal együtt megjelent az első olyan kábelnet-előfizetés, mely kihasználja az új technológiában rejlő lehetőségeket. A Kábelnet Extra díjcsomag letöltési irányban maximum 25, feltöltési irányban pedig maximum 4 megabit/másodperces sávszélességet kínál (a garantált sávszélesség 4/1 megabit másodpercenként) havi 9890 forintért, egyéves hűségidő vállalása esetén. Az ügyfelek ez esetben is olcsóbban juthatnak a szolgáltatáshoz, ha az internet mellé telefon- és televíziószolgáltatást is rendelnek természetesen. A szolgáltató tavaly szeptemberben jelentette be, hogy 2013 végére körülbelül 780 ezer háztartást tervez elérni FTTH-hálózattal, valamint még idén további 380 ezer kábelhálózattal lefedett háztartásban EuroDocsis 3.0 technológiával fejleszti tovább hálózatát. Az ütemterv szerint év végére 200 ezer háztartásban lesz elérhető az új generációs optikai hálózat, az ötéves etap lejártával pedig a tervezett hálózatfejlesztések eredményeképpen összesen mintegy 1,2 millió háztartásban lehet jelen az új generációs hozzáférési hálózatok valamelyike. Az optikai hálózat kiépítéséhez elsősorban FTTH G-PON (Gigabit Passive Optical Network, gigabites passzív optikai hálózat) technológiát használ a Magyar Telekom, de a társaság közleménye szerint eseti alapon egyéb technológiák használatára is sor kerülhet. A G-PON egy pontból több fogyasztó lakóhelyéig viszi el az optikai szálat, az egyetlen optikai szálon pedig áramellátást nem igénylő (passzív) eszközök osztják meg a sávszélességet. Az EuroDocsis 3.0 a jelenlegi kábelhálózat (HFC) továbbfejlesztését jelenti, amely azonban nem igényel a fizikai hálózatban további beruházásokat, csupán a fejállomásnál és az ügyfelek lakóhelyén van szükség a berendezések fejlesztésére. forrás: internet


Angol információ a wikipédiából:

A schematic illustrating how the FTTx architectures vary with regard to the distance between the optical fiber and the end-user. The building on the left is the central office; the building on the right is one of the buildings served by the central office. The dotted rectangles represent separate living or office spaces within the same building.

Fiber to the x (FTTx) is a generic term for any network architecture that uses optical fiber to replace all or part of the usual copper local loop used for last mile telecommunications. The four technologies, in order of an increasingly longer fiber loop are:

  • Fiber to the node / neighborhood (FTTN) / Fiber to the cabinet (FTTCab)
  • Fiber to the curb (FTTC) / Fibre to the kerb (FTTK)[1]
  • Fiber to the building (FTTB)
  • Fiber to the home (FTTH)

In the actual deployments, the difference between FTTN and FTTC is quite subtle and is mostly that the latter is nearer the customer than the former. The broadly-defined term fiber to the premises (FTTP) is sometimes used to describe FTTH and/or FTTB.[2]

Contents

[hide]
  • 1 Fibers
    • 1.1 Fiber to the node
    • 1.2 Fiber to the Telecommunications Enclosure
    • 1.3 Fiber to the curb
  • 2 Fiber In The Loop
  • 3 Technologies
  • 4 Fiber to the premises
    • 4.1 Optical portion
      • 4.1.1 Direct fiber
      • 4.1.2 Shared fiber
        • 4.1.2.1 Active optical network
        • 4.1.2.2 Passive optical network
    • 4.2 Electrical portion
    • 4.3 Deployment history
  • 5 See also
  • 6 Notes and references
  • 7 External links
    • 7.1 Fiber to the premises

//

Fibers

Fiber to the node

Fiber to the Node (FTTN), also called fiber to the neighborhood or fiber to the cabinet (FTTCab),[3] is a telecommunication architecture based on fiber-optic cables run to a cabinet serving a neighborhood. Customers connect to this cabinet using traditional coaxial cable or twisted pair wiring. The area served by the cabinet is usually less than 1,500 m in radius and can contain several hundred customers. (If the cabinet serves an area of less than 300 m in radius then the architecture is typically called fiber to the curb.)[4] Fiber to the node allows delivery of broadband services such as high speed internet. High speed communications protocols such as broadband cable access (typically DOCSIS) or some form of DSL are used between the cabinet and the customers. The data rates vary according to the exact protocol used and according to how close the customer is to the cabinet. Unlike the competing fiber to the premises (FTTP) technology, fiber to the node can use the existing coaxial or twisted pair infrastructure to provide last mile service. For this reason, fiber to the node costs less to deploy. However, it also has lower bandwidth potential than fiber to the premises.

Fiber to the Telecommunications Enclosure

Diagram originally published by the Fiber Optics LAN Section of the Telecommunications Industry Association

Fiber-to-the-Telecommunications-Enclosure (FTTE) is a standards-compliant structured cabling system architecture that extends the optical fiber backbone network from the equipment room, through the telecom room, and directly to a telecommunications enclosure (TE) installed in a common space to serve a number of users in a work area. Its implementation is based on the TIA/EIA-569-B “Pathways and Spaces” standard, which defines the Telecommunications Enclosure (TE), and TIA/EIA-568-B.1 Addendum 5, which defines the cabling when a TE is used. The FTTE architecture allows for many media choices from the TE to the work area; it may be balanced twisted pair copper, multi-mode optical fiber, or even wireless if an access point is installed in or near the TE. Depending on the user’s needs, FTTE can be deployed in low-density or high-density configurations. A low-density system might use one or two inexpensive 8-port Ethernet mini-switches as an example (these switches have eight 10/100 Mbit/s Ethernet copper ports and one 1 Gbit/s Ethernet fiber uplink). A high-density FTTE design might use commonly available 24- or 48-port switches (these switches are configured with one 1 Gbit/s uplink port per twelve 100BASE-TX user ports). This relatively high work area-to-backbone port ratio provides better performance than is typically provided to enterprise users. Both low and high-density FTTE architectures provide excellent performance in terms of bandwidth delivered to the work area.

  • Advantages
    • Low Cost
    • Non-blocking or low-blocking performance better supports convergence
    • Extremely flexible to deploy; supports Moves, Adds & Changes
    • Enables consolidation of electronics into a centralized Telecommunications Room
    • Allows the use of a variety of media from the TE to the user
  • Disadvantages
    • TE location is near the user and must be secured

Fiber to the curb

Fiber to the curb (FTTC), also called fibre to the kerb (FTTK),[1] is a telecommunications system based on fiber-optic cables run to a platform that serves several customers. Each of these customers has a connection to this platform via coaxial cable or twisted pair. Fiber to the curb allows delivery of broadband services such as high speed internet. High speed communications protocols such as broadband cable access (typically DOCSIS) or some form of DSL are used between the cabinet and the customers. The data rates vary according to the exact protocol used and according to how close the customer is to the cabinet. FTTC is subtly distinct from FTTN or FTTP (all are versions of Fiber in the Loop). The chief difference is the placement of the cabinet. FTTC will be placed near the "curb" which differs from FTTN which is placed far from the customer and FTTP which is placed right at the serving location. Unlike the competing fiber to the premises (FTTP) technology, fiber to the curb can use the existing coaxial or twisted pair infrastructure to provide last mile service. For this reason, fiber to the curb costs less to deploy. However, it also has lower bandwidth potential than fiber to the premises. In the United States of America and Canada, the largest deployment of FTTC was carried out by BellSouth Telecommunications. With the acquisition of BellSouth by AT&T, deployment of FTTC will end. Future deployments will be based on either FTTN or FTTP. Existing FTTC plant may be removed and replaced with FTTP.[5]

Fiber In The Loop

Fiber In The Loop (FITL) is a system implementing or upgrading portions of the POTS local loop with fiber optic technology from the central office of a telephone carrier to a remote Serving area interface (SAI) located in a neighborhood or to an Optical Network Unit (ONU) located at the customer premises (residential and/or business). Generally, fiber is used in either all or part of the local loop distribution network. FITL includes various architectures, such as fiber to the curb (FTTC), fiber to the home (FTTH) and fiber to the premises (FTTP). Residential areas already served by balanced pair distribution plant call for a trade-off between cost and capacity. The closer the fiber head, the higher the cost of construction and the higher the channel capacity. In places not served by metallic facilities, little cost is saved by not running fiber to the home. A similar network called a hybrid fibre-coaxial (HFC) network is used by cable television operators but is usually not synonymous with "fiber In the loop", although similar advanced services are provided by the HFC network.

Technologies

The two main technologies used for these architectures are VDSL2 (used in FTTN, FTTC and in some FTTB deployments) and PON (the one used in FTTH and in some FTTB deployments).

Fiber to the premises

Fiber to the premises (FTTP) is a form of fiber-optic communication delivery in which an optical fiber is run directly onto the customers' premises. This contrasts with other fiber-optic communication delivery strategies such as fiber to the node (FTTN), fiber to the curb (FTTC), or hybrid fibre-coaxial (HFC), all of which depend upon more traditional methods such as copper wires or coaxial cable for "last mile" delivery. Fiber to the premises can be further categorized according to where the optical fiber ends:

  • FTTH (fiber to the home) is a form of fiber optic communication delivery in which the optical signal reaches the end user's living or office space.[6]
  • FTTB (fiber to the building) is a form of fiber optic communication delivery in which the optical signal reaches the private property enclosing the home or business of the subscriber or set of subscribers, but where the optical fiber terminates before reaching the home living space or business office space, with the path extended from that point up to the user's space over a physical medium other than optical fiber (for example copper loops). [7]

Optical portion

Optical distribution networks have several competing technologies.

Direct fiber

The simplest optical distribution network can be called direct fiber. In this architecture, each fiber leaving the central office goes to exactly one customer. Such networks can provide excellent bandwidth since each customer gets their own dedicated fiber extending all the way to the central office. However, this approach is about 10% more costly due to the amount of fiber and central office machinery required.[8] The approach is generally favored by new entrants and competitive operators. A benefit of this approach is that it doesn't exclude any layer 2 networking technologies, be they Passive optical network, Active Optical Network, etc. From a regulatory point of view it leads to least implications as any form of regulatory remedy is still possible using this topology. [9].

Shared fiber

More commonly each fiber leaving the central office is actually shared by many customers. It is not until such a fiber gets relatively close to the customers that it is split into individual customer-specific fibers. There are two competing optical distribution network architectures which achieve this split: active optical networks (AONs) and passive optical networks (PONs).

Active optical network

Comparison showing how a typical active optical network handles downstream traffic differently than a typical passive optical network. The type of active optical network shown is a star network capable of multicasting. The type of passive optical network shown is a star network having multiple splitters housed in the same cabinet.

Active optical networks rely on some sort of electrically powered equipment to distribute the signal, such as a switch, router, or multiplexer. Each signal leaving the central office is directed only to the customer for which it is intended. Incoming signals from the customers avoid colliding at the intersection because the powered equipment there provides buffering. As of 2007, the most common type of active optical networks are called active ethernet, a type of ethernet in the first mile (EFM). Active ethernet uses optical ethernet switches to distribute the signal, thus incorporating the customers' premises and the central office into one giant switched ethernet network. Such networks are identical to the ethernet computer networks used in businesses and academic institutions, except that their purpose is to connect homes and buildings to a central office rather than to connect computers and printers within a campus. Each switching cabinet can handle up to 1,000 customers, although 400-500 is more typical. This neighborhood equipment performs layer 2/layer 3 switching and routing, offloading full layer 3 routing to the carrier's central office. The IEEE 802.3ah standard enables service providers to deliver up to 100 Mbit/s full-duplex over one single-mode optical fiber to the premises depending on the provider. Speeds of 1Gbit/s are becoming commercially available.

Passive optical network

Passive optical network (PON) is a point-to-multipoint, fiber to the premises network architecture in which unpowered optical splitters are used to enable a single optical fiber to serve multiple premises, typically 32-128. A PON configuration reduces the amount of fiber and central office equipment required compared with point to point architectures. Downstream signal coming from the central office is broadcast to each customer premises sharing a fiber. Encryption is used to prevent eavesdropping. Upstream signals are combined using a multiple access protocol, invariably time division multiple access (TDMA). The OLTs "range" the ONUs in order to provide time slot assignments for upstream communication.

Electrical portion

Once on private property, the signal typically travels the final distance to the end user's equipment using an electrical format. A device called an optical network terminal (ONT), also called an optical network unit (ONU), converts the optical signal into an electrical signal. (ONT is an ITU-T term, whereas ONU is an IEEE term, but the two terms mean exactly the same thing.) Optical network terminals require electrical power for their operation, so some providers connect them to back-up batteries in case of power outages. Optical network units use thin film filter technology to convert between optical and electrical signals. For fiber to the home and for some forms of fiber to the building, it is common for the building's existing phone systems, local area networks, and cable TV systems to connect directly to the ONT. If all three systems cannot directly reach the ONT, it is possible to combine signals and transport them over a common medium. Once closer to the end-user, equipment such as a router, modem, and/or network interface module can separate the signals and convert them into the appropriate protocol. For example, one solution for apartment buildings uses VDSL to combine data (and / or video) with voice. With this approach, the combined signal travels through the building over the existing telephone wiring until it reaches the end-user's living space. Once there, a VDSL modem copies the data and video signals and converts them into ethernet protocol. These are then sent over the end user's category 5 cable. A network interface module can then separate out the video signal and convert it into an RF signal that is sent over the end-user's coaxial cable. The voice signal continues to travel over the phone wiring and is sent through DSL filters to remove the video and data signals. An alternative strategy allows data and / or voice to be transmitted over coaxial cable. In yet another strategy, some office buildings dispense with the telephone wiring altogether, instead using voice over Internet Protocol phones that can plug directly into the local area network.



Formátumok


A dokumentum megtekinthető az alábbi formátumokban is:
- Microsoft Word Document formátum: http://maxeline.hu/d1502-ftth-F-T-T-H-FTTH-h-shy-rek.doc




Megrendelés, információ,
kapcsolat, elérhetőség


Nyomtatóbarát változat


Ugrás az oldal tetejéreUgrás az oldal tetejére  |  Címlap   |  Honlap térkép, tartalmi áttekintés

Megoldásaink  |  Szolgáltatásaink  |  Díjcsomagjaink  |  Termékeink  |  Magunkról  |  Áraink
Ügyfélszolgálat  |  Letöltések  |  Sajtószoba  |  Kapcsolat  |  Karrier, álláslehetőségek
Cégnév ötletek | Cégnév tippek | Cégnév generáló / cégnév generátor | Cégnevek kitalálása

Adatvédelmi nyilatkozat  |  A MAXELINE.HU honlap látogatása a feltételek elfogadását jelenti
Copyright © 1999-2019 WWW.MAXELINE.HU